Saturday, July 02, 2016

The 'Makr-B-Bot' Part 2: Building the mechanics

After collecting the parts and studying the drawings and instructions of the Printrbot it's time to  start building. Before I got started I realized two things are very important for a 3D-Printer: It must be rigid, and all angles must be exactly 90 degrees. For lengths up to 30 cm the makerbeam seems rigid enough, although in the end I found that if you lift the bottom frame at one end it still deforms slightly. By using only the pre-cut length pieces I made sure all angles 90 degrees and all guides are exactly parallel .

This is the basic frame. Although over time many things have adde and modified, this part has remained basically unchanged.


Fixing the vertical rods,both at the bottom and at the top.
Mounted the Y-Axis stepper motor on a piece of Aluminium L-profile. A frame made from 4 pieces of 100 mm  is used as the carrier. Four ball bearings on the side, four on the front to carry the Y-Axis sliders.
The Y-Axis slider is assembled from two rods and some 100, 50 and 40 mm makerbeams. Note that on the photo's most parts are still assembled using Ty-Raps. Later on I replaced most of these with hose clamps, but during the build and test phase this is more flexible.
The print bed will be placed on a frame made from two rods and some 100mm makerbeam pieces. I mounted a piece of 40mm beam to the front of the steppermotor and two 10mm ball bearings to that. 

 The Z-Axis motor is placed in the corner, and fixed using one long hose-clamp.

Basic setup, with some electronics to test if all motors run and if it all moves as expected...




Sunday, May 01, 2016

Commodore VIC-20


The famous VIC-20. Predecessor to the Commodore 64, introduced in 1980 and thus being the very first affordable (US$300,-) colour computer.  Almost three million units were sold at the time, so they are still not very rare.
The unit I got (for €40,-) is in pretty good condition. The case has some inevitable yellow marks, caused by the reaction of UV light with the flame-retardand in the plastic. Something that could be removed (just google for 'RetrOBright')  but I think I'll just leave it like it is and not risk damaging the plastic.
The unit came without any cables, so the first step will be to find out how to connect the monitor. As always, this information is easy to be found. I found a complete overview on Retro Isle this time.
The video is on the 5-pin DIN plug, 2 = GND, 4= Video. 

Unfortunately it does not seem to work.
My small LCD monitor (that works fine with my TRS-80 and Acorn Electron) says 'no signal'. When measuring the video signal on the outside and on the board itself using an oscilloscope it looks good. But even adjusting the output level to the max does not solve the issue.
Just to be sure there is something wrong with it I connected it to the flatscreen television in the living room, only to find that it actually does work....
Looking into this issue I found several references to the fact that the video signal of the VIC is really bad, which did not really matter in those days since the standard television and monitor was pretty tolerant, but is a problem for our modern, all digital, LCD screens.
On the 'Denial WIKI' there are a few suggestions on how to improve video output which might be worth trying.


Monday, April 25, 2016

Acorn Electron

For only €20,- I purchased an Acorn Electron in excellent condition. The Electron was developed around 1982 as a direct competitor to the the Sinclair Spectrum, and even though it had some drawbacks it was sold in such large quantities that it is not to rare today. No need to tell the history, since there is already an excellent article on The Register about that.
Although this machine was not really on  my wish-list it's a pleasant surprise. First it's very compact and well-built. The housing is made of solid plastic, which even after 30 years does not show any colouring or scratches.
The keyboard is pretty good, and although most keys have multiple functions they are not crammed with it like the Commodore 64 or Sinclair spectrum.
The inside looks equally good. Just four screws have to be taken out to reveal a very clean motherboard and separate power supply .
  
They were very serious about the shielding against electromagnetic radiation, as clearly visible on the keyboard side.  

The user guide is excellent. It starts (as many user guides from this era) with an explanation of what a computer is: 

"A computer is a general purpose electronic machine that can be instructed to do a great variety of things - play games, perform complex calculations, store and retrieve information, display graphs and so on."
(You can read the whole guide on Acorn Electron World .  )

What surprised me is the possibilities of the Basic interpreter. It actually has named functions and procedures, a 'repeat..until' loop, quite advanced graphic functions and a built-in assembler to write machine code. And this machine code is definitely worth checking out, because the Basic is not really fast...

Enabling Colour on the composite video output

After working with it for while having it connected to a LCD monitor I noticed that it did not display colour. Initially worried that maybe the video circuit was damaged, I soon found out that this is intentional. The standard composite video output is set to black and white, but there is a link on the board that can be made to enable the colour signal. 
It's marked 'LK4', and I just soldered a link on it. After that the monitor shows colour as expected, but I do have the impression that the letters are less crisp (which was probably the reason for Acorn to have just black and white as a default)

Loading software

The machine came without a cassette recorder, but it should work with any standard audio recorder. Which in these days can be replaced by simple recording / replay software on a PC. I used Audacity to record a simple Basic program, and after fiddling a bit with the audio levels (for recording as well as playback) it worked fine.
Loading standard software appeared a bit harder. Almost all software published for the Electron is available online, usually in the '.UEF' ('Universal Emulator Format') file format. A very simple Windows program named FreeUEF can be used to either replay it as audio or to convert it to a  .WAV file that can be replayed by other software. The last solution did not really work for me. Replaying the created .WAV files using Audacity always gave an error after reading the first block. All other blocks seem to load fine, but the program will not run on the Electron.

Finally I used an Android App on my tablet named 'TapDancer'. This works flawlessly and because it actually looks like a Commodore Datasette it adds a little extra to the retro-feeling...

And if you want to go a step further, there is the GoSDC  expansion module that lets you load programs from an SD card. But let's face it: compared to loading programs using the tape interface it only saves you a minute during the loading itself. So unless you switch programs every 5 minutes I doubt if this is really worth it.